数学工房 Q&A   お問い合わせ
コース紹介 募集要項 スケジュール 講師紹介 会員の広場 著作書籍 セミナー会場

 スケジュール ページ
このページには,「講座のスケジュール」に関する次の情報を載せています: なお,「過去の講座履歴と講義報告」はこちらよりご覧ください

 


 今月のスケジュール
12月
26 27 28 29 30 1 2
I.C(第3回,終)
14:00-18:00
3
I.E(第6回,終)
11:00-13:00

M.A(第3回,終)
14:00-18:00
4 5 6 7 8 9
10 11 12 13 14 15 16
集中セミナー
14:00-18:00
17
集中セミナー
11:00-16:00
18 19 20 21 22 23
集中セミナー
14:00-18:00
24
集中セミナー
11:00-16:00
25 26 27 28 29 30
31 1 2 3 4 5 6
集中セミナー
14:00-18:00

△このページの先頭へ
 講座内容について
以下の講座について,詳細を載せています:

 2017年度 冬期集中セミナー
一覧
正則関数の基礎定理
Cauchy理論の帰結
12月16日(土)
17日(日)
一般位相特論
フィルタの概念とネットの基礎的応用
12月23日(土・祝)
24日(日)
函数解析特論
Banach空間値の正則関数
1月6日(土)
7日(日)
線型数学演習 行列式の楽しみ 1月8日(月・祝)
Rnのベクトル場 1月13日(土)
14日(日)

※講座に参加されるには年会費のお支払いが必要です。講座受講料と一緒にお支払いが便利です。

 
〔料金について〕
  • 2日間の集中セミナーは¥18,000(学割¥15,000)です。1日の集中セミナーは¥10,000(学割¥8,000)です。

 
講座名 正則関数の基礎定理
Cauchy理論の帰結
内容   Cauchy-Riemann、正則の概念、冪級数の基本的な事、複素線積分 Cauchyの積分定理・公式と正則関数の冪級数への表現定理 あたりまでの知識がある人のためのコースです。複素関数論はここから様々な形に分岐し展開していきますが その共通の基礎になる基本定理を取り扱います。関係する集中講座としては「函数解析特論 Banach空間値の正則関数」 (1月6日、7日)があります。
項目
  1. Cauchy理論のまとめ
  2. Riemannの連続定理・一致の定理・領域と正則関数環
  3. Taylor係数のCauchy評価とその応用
  4. 開写像定理
  5. 最大絶対値の原理
日時   12月16日(土) 14:00−18:00、
  12月17日(日) 11:00−16:00
目次へもどる
 
講座名 一般位相特論
フィルタの概念とネットの基礎的応用
内容   現代数学の様々な領域での強力な基礎工具であるフィルタとネットをまとめて取り上げることにしました。 当初は一般位相の発展編の初めに取り上げる予定でしたが、位相自体の話で取り上げるべきテーマがたくさんあるので 独立に基礎をまとめて取り上げます。
  フィルタやネットは非距離的な位相の取り扱いの必要から出てきました。 例えば、超関数の空間は非距離的ですね。あるいはBanach空間でも弱位相は重要なのです。通常の 1変数の微積分での関数列の各点収束と一様収束の関係はこの問題の雛型です。 ネットのいいところは対象の連続性に関係する諸性質が簡単に扱える事です。 その威力を関数空間で実感された方もいらっしゃると思います。
 
  一般位相の基礎(開集合、閉集合、近傍、連続、完備、コンパクト等)の知識は必要です(数学工房の講座では一般位相基礎編I、II程度)。
項目
  1. フィルタの基礎概念と性質
  2. 位相空間でのフィルタの収束と用法
  3. ネットの概念と基本的性質(フィルタとの関係)
  4. ネットの収束と位相空間での用法
日時   12月23日(土・祝) 14:00−18:00、
  12月24日(日) 11:00−16:00
目次へもどる
 
講座名 函数解析特論
Banach空間値の正則関数
内容   Banach空間と線型作用素についての極く基本的な知識(引用された結果が理解できる程度)は仮定します。
項目
  1. 正則性、弱正則性
  2. Banach空間値の正則関数の基本的性質
  3. Banach空間値関数の複素線積分
  4. Cauchyの積分定理・積分公式
日時   1月6日(土) 14:00−18:00、
  1月7日(日) 11:00−16:00
目次へもどる
 
講座名 線型数学演習 行列式の楽しみ
内容   詳細については、しばらくお待ちください。
日時   1月8日(月・祝) 13:00−18:00
目次へもどる
 
講座名 Rnのベクトル場
項目
  1. 連続写像・極限からの補充
    1. いくつかの位相的概念
    2. 関数の極限・写像の極限
    3. 連続写像・連続関数
  2. 可微分写像とJacobi行列・行列式
    1. 写像の微分可能性
    2. 領域上のJacobi行列
    3. Jacobi行列式の定性的意味
日時   1月13日(土) 14:00−18:00、
  1月14日(日) 11:00−16:00
目次へもどる
 
△このページの先頭へ
 今後のスケジュール
 年末年始のスケジュール

12月
26 27 28 29 30 1 2
I.C(第3回,終)
14:00-18:00
3
I.E(第6回,終)
11:00-13:00

M.A(第3回,終)
14:00-18:00
4 5 6 7 8 9
10 11 12 13 14 15 16
集中セミナー
14:00-18:00
17
集中セミナー
11:00-16:00
18 19 20 21 22 23
集中セミナー
14:00-18:00
24
集中セミナー
11:00-16:00
25 26 27 28 29 30
31 1 2 3 4 5 6
集中セミナー
14:00-18:00
1月
31 1 2 3 4 5 6
集中セミナー
14:00-18:00
7
集中セミナー
11:00-16:00
8
集中セミナー
13:00-18:00
9 10 11 12 13
集中セミナー
14:00-18:00
14
集中セミナー
11:00-16:00
15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 1 2 3
ホーム   ページの先頭
 >